

Introduction

Brief Background

- Buckman Direct Diversion Project (BDD) will divert water from the Rio Grande to residents of Santa Fe in 2011
- Water intake is approximately 3 miles downstream of Los Alamos Canyon (LANL)
- In 2007, BDD Board requested that DOE and LANL fund & implement actions & programs to protect public water supplies
 - Independent Peer Review (IPR) initiated upon BDD obtaining DOE funds
- IPR Team selected
 - ChemRisk expertise in human health risk assessment and evaluation of historical operations at U.S. nuclear weapons plants
 - AMEC expertise in New Mexico hydrology, hydrogeology and geochemistry

Fundamental Goals of the Independent Peer Review (IPR)

- Independent 3rd party analysis of potential health risk
- Consider outside review and comments (Public, BDD Board, LANL)
- Address public concerns
- Transparent process
- High quality technical work
- Use of best methodology (Federal Guidance, USEPA)
- Use of recent data and information
- Public communication

Specific Objectives of the IPR Analysis

- Evaluate potential tap water-related health risks from chemicals and radionuclides
 - Compare estimated risks to regulatory benchmarks
 - Compare estimated risks to those of everyday life
 - Incorporate public concerns
- Evaluate potential future impacts on Santa Fe tap water from LANL-related constituents in stormwater, sediments and groundwater

Specific Public Concerns Addressed in the IPR Analysis

- Sensitive sub-populations
- Personal care products and pharmaceuticals
- Synergistic effects
- Endocrine disruptive effects
- Consideration of specific exposure pathways (swimming, vegetable ingestion, etc.)

12

Methods & Results

Information Resources in the IPR

- BDD public and technical communication materials
- Identified relevant information for
 - Data selection
 - Human health risk assessment
- Evaluated reports by NMED and LANL
- Rio Grande water quality databases
 - Risk Analysis, Communication, Evaluation, and Reduction (RACER)
 - LANL
 - USGS
- LANL ground- and surface water databases (storm water impacts)

Identified Constituents of Interest (COIs)

- Data from RACER: Considered all chemicals and radionuclides measured in surface water at Buckman since 2000
 - 11 events at 2 Buckman locations
 - 22 events at 5 upstream Otowi locations
- Those capable of causing health effects were considered to be COIs
 - 50 COIs: 35 chemicals & 15 radionuclides

Comparison of Rio Grande COI levels to Drinking Water Criteria

Drinking Water Criteria

•Drinking water criteria define a quality of water that can be safely consumed by humans throughout their lifetime •Apply to finished, treated tapwater

Drinking Water Criteria used by IPR

- Hierarchy for criteria selection (per the SOW):
 - 1. EPA MCLs selected when available (EPA MCLs are enforced by NMED)
 - 2. If no MCL, lowest health-based *tap water* criteria from NMED or other EPA sources
- Surface and groundwater criteria were not used
 - Don't always apply to public drinking water systems
 - Are not always developed with tap water exposures in mind

Other Drinking Water Criteria

- When MCLs were not available, the lowest value from the following guidelines were used:
 - 1. NMED Tap Water Screening Levels
 - 2. USEPA Regional Tap Water Screening Levels (RSLs)
 - 3. USEPA Preliminary Remediation Goals (PRGs) for Radionuclides
 - 4. USEPA Drinking Water Equivalent Levels (DWELs)
 - 5. Lifetime Health Advisories (Lifetime HAs)
 - 6. USEPA Secondary Drinking Water Regulations (SMCLs)

Public questions related to the use of drinking water standards

- Why weren't the New Mexico surface water criteria for radionuclides used as a basis of comparison?
- Why wasn't the 50 ppb NMED standard for chromium used instead of the 100 ppb EPA MCL?

Point of clarification

- The drinking water standards were not used to calculate risk
- The drinking water standards are only used as a point of comparison with COI levels in untreated Rio Grande water
- Using a different or more conservative drinking water standard does not change the risk estimates

Why weren't the NM surface water criteria for radionuclides used?

- Because they are not *tapwater* standards and do not apply to *finished, treated* drinking water
- They are *surface water* standards that apply to water bodies that may be used as a source of tapwater
- For monitoring and public disclosure purposes
- The NM criteria are actually *higher* than the drinking water criteria used in the IPR

New Mexico "Surface Water Criteria for the Rio Grande"

- Requested by BDD, developed by NMED
- Became effective December 1, 2010
- Apply to stretch of the Rio Grande that includes the Buckman intake (newly designated as a public water supply source)
- None of the COIs exceeded the NM surface water criteria

	NM Surface Water	IPR Drinking Water
Radionuclide	Criteria	Criteria
	(uCi/L)	(uCi/L)
Americium-241	1.9	0.51
Plutonium-239/240	1.5	0.40
Plutonium-238	1.5	0.39
Strontium-90	3.5	0.94
Tritium	4,000	144
Cesium-137	6.4	0.59

Why wasn't the 50 ppb NMED standard for chromium used instead of the 100 ppb EPA MCL?

Drinking water criteria for chromium

- New Mexico's criterion of 50 ppb is for *groundwater*, not tapwater
- The applicable drinking water criterion for chromium is the EPA MCL of 100 ppb, which NMED enforces
- Chromium levels at Buckman did not exceed 50 ppb
- Maximum chromium level at Buckman = 15 ppb

Evaluation of LANL as a COI Source under Base-flow Conditions

Comparison of COIs at Buckman vs. Otowi

- Otowi = "regional background"
- Buckman = "regional background" + LANL

30

These comparisons indicate that LANL does not contribute measurably to COI levels in the Rio Grande during base-flow conditions

How can there be radionuclides in the Rio Grande if they aren't from LANL?

Regional background levels of radionuclides: sources

- Naturally occurring
 - U-238, U-235, Th-232 decay chains
 - K-40 occurs individually in environment
- Man-made
 - Global fallout from nuclear testing

Summary Observations Regarding Baseflow COI Levels in Untreated, Unfiltered Rio Grande Water

- COI levels at Buckman are below drinking water criteria
 - U-234 is only exception
- COI levels at Buckman are the same as those *upstream* from LANL and are consistent with regional background
 - Including U-234
 - Suggests LANL does not contribute measurably to Rio Grande during base-flow conditions

- An increase over "background" risk of cancer
- Lifetime cancer risk in the U.S. is about 21%
- By convention, increased risks less than 0.01% to 0.001% are considered negligible by regulatory agencies

Metals Risk Assessment

"Concentrations of metals in the water column vary over time and are highly responsive to hydrological changes. In site-specific risk assessments, the risk assessor may quantify background levels by measuring metal concentrations at sites upstream from the area of concern."

http://www.epa.gov/raf/metalsframework/pdfs/metals-risk-assessment-final.pdf

No

- We did not evaluate a scenario of "BDD treated water"
- We evaluated a scenario involving 95% removal of *only a few* COIs (Plutonium, Americium, and Uranium)
- All the other COIs were still assumed to be at untreated Rio Grande levels
- We called this a "treated water" scenario in the analysis...should have called it the "95% removal of some COIs scenario"

Noncancer Hazards for Untreated Water **Total Hazard Index** Cadmium Total Chromium Vanadium USEPA Target Hazard Index = Aluminum b Iron Thallium Fluoride Manganese Remaining NC COIs Cobalt Arsenic 7 0 1 2 3 4 5 6 8 9 10 52

Summary of Risk Assessment Results

- The theoretical cancer risk is associated with COIs that are present at regional background levels and/or below drinking water standards
- Some of these COIs were *rarely or never* detected at Buckman
- The risk estimates assume no treatment of the Rio Grande water
- No significant health risks from use of BDD project tapwater

Storm Runoff from the LACW

- Storm events will discharge contaminated sediments into the Rio Grande at the LACW – an episodic release
- Few measurements in the RG downstream of the LACW during storms
- However:
 - the BDD intake will shut down if LACW discharges
- Therefore, the IPR team believes that storm-related discharge from LANL is not a health concern

Contaminated Groundwater at LANL

- Contaminated groundwater exists at LANL and can flow to the west bank of the Rio Grande
- However, even under very conservative assumptions, if the COIs reach the Rio Grande, they would be diluted to negligible amounts
- Hydraulic connection between LANL groundwater & Buckman Well Field is negligible
- Contaminated groundwater at LANL does not impact the water quality at the BDD intake

Summary of IPR Conclusions

- Chemical and radionuclide levels in the Rio Grande are within acceptable drinking water standards, and/or are at regional background levels
- No measurable contribution from LANL during base flow conditions
- No LANL contributions to Buckman well field
- No significant health risk to people drinking BDD Project tapwater

Summary of Key Comments

NMED General Comments

- NMED "generally concurs" with the overall conclusions of the IPR analysis
 - "No significant health risk for BDD water system consumers"
 - COI levels in the Rio Grande "are currently within acceptable drinking water criteria and/or are naturally occurring"
 - "Based on the data received by NMED to date, there is very little if any contribution from LANL to the Rio Grande during normal baseflow conditions"

NMED General Comments (Ctd.)

- NMED "generally concurs" with the overall conclusions of the IPR analysis
 - "Based on the data received by NMED to date, stormwater discharge from LANL does not pose a health risk"
 - "Investigation is being conducted or is planned to determine whether there are contributions from LANL groundwater to the Buckman well field"

NMED General Comment

NMED believes that

-proper functioning of the early warning system,

-response by the BDD operators,

-continued improvement in the control of

contaminated sediment discharges from Los Alamos watershed,

-proper functioning of the BDD treatment system

..are critical to assure storm water discharges from LANL do not pose a health risk.

Questions and comments regarding age groups and susceptible individuals

- "Reference Man" only considers a 150 pound white male and shouldn't be a basis for the risk assessment
- Why didn't the IPR team evaluate different age groups?
- Why weren't pregnant women and fetuses considered? Or the elderly?
- What about immuno-compromised people?

The IPR risk assessment considered numerous age groups

 Exposure factors were determined for age groupings that best reflect how children's behavioral and physiological factors change with age

General Age Group Classification	Chemical Risk Assessment	Radionuclide Risk Assessment
Infant	<1	
Toddler	1 to 2	
	3 to 5	0 to 4
	6 to 10	
Child	11 to 15	5 to 14
Teen/young adult	16 to 20	15 - 24
Adult	21 to 70	25 - 70
Lifetime	0 to 70	0 to 70

 Age-specific exposure factors are the differentiating variables in the risk assessment

The EPA's Reference Dose

- Chemical-specific
- A maximal daily dose that will not cause non-cancer effects over a lifetime of exposure
- Based on most sensitive health endpoint
- Includes numerous safety factors
- Is protective of:
 - -the fetus
 - -children
 - -elderly
 - -pregnant women
 - -immuno-compromised

Use of the EPA reference dose in risk assessment

- Hazard index < 1.0 = no hazard
- Example: HI calculation for arsenic, for child1 or 2 years old:

02-	<u>0.00008 mg/kg-day</u>
0.3 -	0.0003 mg/kg-day

Age Groups & Cancer Potency Adjustment Factors

■ Carcinogens: SF * Dose = Risk

■ Mutagenic carcinogens = ADAF * SF * Dose = Risk

Exposure Age Group`s	Exposure Duration (years)	Age-Dependent Potency Adjustment Factor
Birth to < 1 year	1	10×
1 to $<$ 3 years	2	10×
3 to < 6 years	3	3×
6 to < 11 years	5	3×
11 to < 16 years	5	3×
16 to < 21 years	5	1×
21 to < 70 yr	49	1×
Lifetime	70	

Synergy: what specific analyses were done?

■ 2 +2 = 5

- Literature search for any published synergistic effects between any of the COIs
 - -in vitro in cells
 - -in vivo in animals
 - -epidemiology in humans
- No effects were found
- Note: we did not attempt to account for *antagonistic* effects, where 2 +2 = 3

- 38 of most common medications tested 2000 to 2003
- Samples collected from three RG locations, almost all ND. Detects:
 - Phenytoin (Dilantin, anti-epileptic): 300 ng/L at Espanola (upstream from Buckman)
 - Surface water:
 - Nothing detected at Pilar
 - Amitriptyline (Elavil, Endep): 30 ng/L at Buckman Crossing
- Levels similar to or lower than the measured concentrations in *treated* water from other parts of the U.S.

Other studies of pharmaceuticals in the Rio Grande

■ US Fish and Wildlife (2004)

-multiple analyses at 14 locations in the Rio Grande

-29 pharmaceutical analytes

-only detection was low levels of cholesterol in 10% of samples

- Albuquerque Water Utility Authority (2004)
 - -San Felipe and Alameda Bridge
 - -no detections

Do pharmaceuticals in the Rio Grande pose a health risk?

- Pharmaceuticals are commonly found in untreated sewage and effluent from sewage treatment systems
- However, they have rarely been detected in the Rio Grande and only at very low concentrations -dilution? -degradation? -low source levels?
- There are no drinking water standards for these compounds
- The available data do not indicate a risk

Do personal care products in the Rio Grande pose a risk?

- Shampoos, detergents, perfumes, etc.
- No published data on these compounds from the Rio Grande
- No evidence to indicate that these products in drinking water sources pose a health threat to consumers

Endocrine disruption: how was this accounted for?

- The noncancer hazards for all age groups were
 < 1.0 for all COIs
- Endocrine disruption is accounted for in the calculation of the hazard index
- Therefore, there is no risk of endocrine disruption from consumption of Rio Gande water

Nanoparticles

- NP have been around for millions of years (e.g., soot from fires)
- There is recent interest in *man-made* NP
 - used in commercial products such as coatings, foods, sunscreens, medicinals
 - -inhalation is the primary pathway of interest (ultrafines)
 - -risks, if any, are unclear and are just now being evaluated

Nanoparticles

- Nanoparticles aggregate into larger particles in the environment
- Any nanoparticles would have been captured in the water analyses
- There are no analyses specific for nanoparticles
- There is no evidence to indicate that nanoparticles in sediments and water pose a health threat

Sediment Chemistry at E110

- NMED and LANL report validated sample results for a single storm, samples taken within an hour of each other, for Pu^{239/240} that differ by 100 fold.
- There is no way to determine why the difference exists.
- Concerns regarding COI's in LACW suspended sediments are valid.
- Early warning to BDD is appropriate.

Question & Answer Session