<u>City of Santa Fe 2019 Water Quality Table</u> Regulated Compliance Monitoring

Contaminant	Units	MCL	MCLG	City Well Field ^a	Sample Date	Buckman Tank ^b	Sample Date	Canyon Road WTP	Sample Date	Buckman RWTP	Sample Date	Violation	Typical Source
Synthetic Organic Contaminant	s (SOCs) ^c												
Di(2-ethylhexyl) Phthalate	PPB	6	0	1 (ND-1)	2017	ND	2017	ND	2018	ND	2019	No	Discharge from rubber and chemical factories.
Inorganic Contaminants ^c													
Arsenic	PPB	10	0	3.5 (ND - 3.5)	2017	ND	2017	1.5	2019	ND	2019	No	Erosion of natural deposits; Runoff from orchards; Runoff from glass and electronics production wastes
Barium	PPM	2	2	0.7 (ND - 0.7)	2017	0.04	2017	0.04	2019	0.05	2019	No	Discharge from drilling wastes; Discharge from metal refineries; Erosion of natural deposits
Fluoride	PPM	4	4	0.1 (ND - 0.1)	2017	0.37	2017	0.19	2019	0.26	2019	No	Erosion of natural deposits; Water additive which promotes strong teeth; Discharge from fertilizer and aluminum factories
Nitrate [as N]	PPM	10	10	5.7 (ND - 5.7)	2019	ND	2019	ND	2019	ND	2019	No	Runoff from fertilizer use; Leaching from septic tanks, sewage; Erosion from natural deposits
Selenium	PPM	50	50	2 (ND - 2)	2017	ND	2017	ND	2019	ND	2019	No	Discharge from petroleum and metal refineries; Erosion of natural deposits; Discharge from mines
Radioactive Contaminants ^c													
Gross Alpha Emitters ^d	PCi/L	15	0	0.8 (0.2 - 0.8)	2017	0.5	2017	NA	NA	5.9	2018	No	Erosion of natural deposits
Gross Beta/Photon Emitters	PCi/L	50 ^e	NA	1.4 (ND - 1.4)	2017	3.5	2017	NA	NA	2.6	2018	No	Decay of natural and man-made deposits.
Radium 226/228	PCi/L	5	0	0.8 (0.4 - 0.8)	2017	0.03	2017	NA	NA	0.03	2018	No	Erosion of natural deposits
Uranium	PPB	30	0	1	2017	2	2017	NA	NA	8	2018	No	Erosion of natural deposits;
Surface Water Contaminants ^c													
Turbidity (highest single measurement)	NTU	TT = 1.0	0	NA	NA	NA	NA	0.25	2019	0.02 - 0.21	2019	No	Soil Runoff
Turbidity (lowest monthly % meeting limits)	NTU	TT = % <0.3 NTU	0	NA	NA	NA	NA	100%	2019	100%	2019	No	Soil Runoff
Total Organic Carbon (removal ratio)	NA	Π ^f	NA	NA	NA	NA	NA	1.1 ^g (1.1 - 1.2)	2019	NA	NA	No	Naturally present in the environment

Note:

- a) City wellfield: Alto, Agua Fria, Ferguson, Osage, St. Mikes & Torreon.
- b) Buckman Wells 1-13 and Northwest Well.

- c) The range represents the highest and lowest values within the Compliance Period indicated, if more than one sample was collected.
- d) Gross Alpha Emitters excluding Radon and Uranium
- e) EPA considers 50 pCi/L to be the level of concern for beta particles.
- f) Alternative compliance criteria used to meet TOC removal requirements (running annual average of TOC removal ratio must be >1 each month)
- g) Running annual average (RAA) of TOC removal ratio for each month during 2019 minimum ratio was 1.1 (as per 40 CFR 141.135)

Key to Units, Terms and Abbreviations

NA: Not Applicable.
ND: Not Detected.

TU: Nephelometric Turbidity Units.

PPM: parts per million, or milligrams per liter (mg/L).
 PPB: parts per billion, or micrograms per liter (µg/L).
 PCi/L: picocuries per liter (a measure of radioactivity).

T: A Treatment Technique standard was set instead of an Maximum

Contaminant Leve

(Range): The range represents the highest and lowest values. Range values are not provided if only one sample was taken during the range period.

Action Level (AL): The concentration of a contaminant, which, if exceeded, triggers treatment or other requirements, which a water system must follow.

Locational Running Annual Average (LRAA): The average of analytical results for samples at a particular monitoring location during the previous four calendar quarters. LRAA at each sampling location must be below the MCL (0.060 mg/L for Total Haloacetic Acids and 0.080 mg/L for Total Trihalomethanes)

Maximum Contaminant Level (MCL): The highest level of a contaminant that is allowed in drinking water. MCL's are set as close to the MCLGs as feasible using the best available treatment technology.

Maximum Contaminant Level Goal (MCLG): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

Maximum Residual Disinfectant Level (MRDL): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Maximum Residual Disinfectant Level Goal (MRDLG): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

Secondary MCL (SMCL): Non-mandatory water quality standards for certain contaminants established as guidelines to assist public water systems in managing their drinking water for aesthetic considerations, such as taste, color and odor. These contaminants are not considered to present a risk to human health at the SMCL.

Treatment Technique (TT): A required process intended to reduce the level of a contaminant in drinking water.

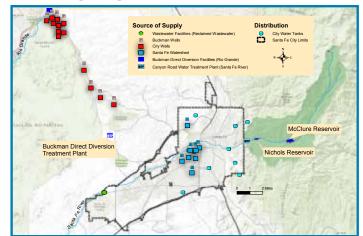
2019 Water Quality Report

City of Santa Fe Water Division P.O. Box 909, Santa Fe, NM 87504

Customer Service (505) 955-4333 Administration (505) 955-4202

The City of Santa Fe's Water Division (the City) is pleased to provide the 2019 Water Quality Report for Water System NM3505126. A safe and dependable water supply is vital to our community and is the primary mission of the City. This report is provided annually and contains information on the quality of water obtained throughout the calendar year or most recent monitoring period. In 2019, the City's drinking water met all U.S. Environmental Protection Agency (EPA) and State drinking water quality limits. The report contains additional details about where your water comes from, what it contains, and how it compares to standards set by federal and state regulatory agencies. It also provides educational information on contaminants which may be a concern.

Sources of Supply


The City was served by four distinct sources of supply in 2019. The 17,000 acre Santa Fe Watershed provides surface runoff to the Santa Fe River where it is stored in the McClure and Nichols Reservoir prior to treatment. Surface water from the Santa Fe River and Rio Grande is treated through conventional and advanced treatment processes at the Canyon Road Water Treatment Plant and Buckman Regional Water Treatment Plant (BRWTP) (separate Water System NM3502826), respectively. The City Well Field is mostly located in close proximity to the Santa Fe River and consists of 6 active wells located within the City limits of Santa Fe. The Buckman Well Field consists of 13 wells located near the Rio Grande, approximately 15 miles northwest of Santa Fe. All four sources are treated with chlorine for protection of customers against disease-causing microorganisms (pathogens), including bacteria and viruses. Fluoride is added to the water supply to benefit the community as recommended by public health professionals.

In 2011, the Buckman Direct Diversion (BDD) Project surface water supply was successfully integrated into the municipal distribution system and operated in conjunction with the City's pre-existing sources of supply throughout 2019. The surface water treated at the BRWTP is taken directly from the Rio Grande. BDD not only improves sustainability for the area but also increases the City's resilience under drought conditions, replacing current groundwater pumping that cannot be sustained, and making the City's wells available as drought and emergency reserves rather than sources used to meet daily water demands.

Do I need to take special precautions?

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Drinking Water Hotline (800-426-4791).

<u>Map of Water Sources</u>

Source Water Assessment and its Availability

The New Mexico Environment Department (NMED) completed a Source Water Assessment for the City of Santa Fe. This assessment includes a determination of source water protection areas and an inventory of pollution sources within the areas of concern. NMED concluded: "The Susceptibility Analysis of the City of Santa Fe water utility reveals that the utility is well maintained and operated, and the sources of drinking water are generally protected from potential sources of contamination based on an evaluation of the available information. The susceptibility rank of the entire water system is "moderately low". A copy of the Assessment is available by contacting NMED at 505-476-8638.

City ordinances adopted in 2005 built upon the recommendations in the Source Water Assessment. The "Safe Drinking Water and Source Water Protection" and the "Stormwater Illicit Discharge Control" ordinances provide additional controls and protections for the City's ground and surface water supplies. In addition, the City established a Stormwater Program with the goal of reducing pollutant discharged to the Santa Fe River. Please contact 505-955-5644 to report illegal dumping in storm drains, streets and arroyos.

<u>En Espanol</u>

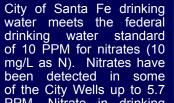
Este reporte contiene información importante sobre la calidad del agua en Santa Fe. Si tiene alguna pregunta o duda sobre este reporte puede hablarle a Patricio Pacheco al teléfono 505-955-4220 o Mario Torres at 505-955-4228 o escribe a la dirección de arriba.

Contacts for Additional Information

If you have any questions, comments, or suggestions regarding this report please contact Alex Puglisi at 505-955-4232 or write to the above address.

Why are there Contaminants in my Drinking Water?

Sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity. Contaminants in drinking water máy



- Microbial contaminants, such as viruses and bacteria that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- Inorganic contaminants, such as salts and metals can be naturally-occurring or result from urban storm-water runoff, industrial or domestic wastewater discharges, oil and gas production, mining or farming.
- Pesticides and herbicides, may come from a variety of sources, such as agriculture, urban storm-water runoff, and residential uses
- Organic chemical contaminants, including synthetic and volatile organic chemicals, are by-products of industrial processes and petroleum production, and can also come from gas stations, urban storm water runoff, and septic systems.
- Radioactive contaminants, which can be naturally occurring, man-made from nuclear facilities and atmospheric deposition from former above ground testing, or be the result of oil and gas production and mining activities.

n order to ensure that tap water is safe to drink, EPA prescribes regulations that limit the amount of certain contaminants in water provided by public water systems. Food and Drug Administration (FDA) regulations establish limits for contaminants in bottled water, which must provide the same protection for public health.

Nitrates

water meets the federal PPM. Nitrate in drinking

water at levels above 10 PPM is a health risk for infants of less than six months of age. High nitrate levels in drinking water can cause blue baby syndrome. Nitrate levels may rise quickly for short periods of time because of rainfall or agricultural activity. If you are caring for an infant you should ask advice from your health care provider.

Arsenic

The drinking water standard for arsenic is 10 PPB. The City's drinking water continued to meet this standard throughout 2019. Arsenic occurs naturally in the earth's crust. When these arsenic-containing rocks, minerals, and soil erode, they release arsenic into ground water. While our drinking water meets EPA's standard for arsenic, it does contain low levels of arsenic. The EPA standard balances the current understanding of arsenic's possible health effects against the costs of removing arsenic from drinking water. EPA continues to research the health effects of low levels of arsenic, which is a mineral known to cause cancer in humans at high concentrations and is linked to other health effects such as skin damage and circulatory problems.

Cryptosporidium

Cryptosporidium is a protozoan parasite that is common in surface waters. The oocyst is the transmission stage of the organism. Cryptosporidium is introduced into our source waters via wild animal populations. Although the organism is readily removed by the conventional treatment process utilized at the Canvon Road Water Treatment facility, the oocyst is resistant to chemical disinfectants like chlorine and the primary reason to determine if additional treatment is required. Ingestion of Cryptosporidium may cause cryptosporidiosis, an abdominal

In April 2007 the City began a two-year study to determine the average Cryptosporidium concentration in source water entering the Canvon Road Water Treatment facility. The sampling portion of the study was completed in March of 2009. The study was part of the requirements contained in the 2006 USEPA Long-Term Enhanced Surface Water Treatment Rule. Cryptosporidium was detected in a single untreated sample in each of the following months: December of 2007 September 2008 and October 2008. The highest 12-month consecutive mean for this study was 0.018 oocysts/L. Since the concentration is <0.075 oocysts/L, no additional treatment at the Canyon Road Water Treatment Facility was necessary. The City began a second round of sampling, one sample a month, starting in October 2015 and completed in September 2017. No Cryptosporidium oocysts were detected during the second round of sampling during the October 2015 to September 2017 period, and consequently no additional treatment at the Canyon Road Water Treatment Facility is necessary. As with Cryptosporidium oocysts, no Giardia Lamblia cysts have been detected in the October 2015 to September 2017 time period at the Canyon Road WTP.

Any new water system treating surface water such as BDD is required to monitor Cryptosporidium for 24 consecutive months. At the BDD the untreated raw Rio Grande water Cryptosporidium test results ranged from 0 to 0.4 oocysts/L BDD began a second round of sampling, one sample a month, starting in October 2015 and ending September 2017. No Cryptosporidium oocysts were detected during the second round of sampling (October 2015 to September 2017, except July 2017 (0.1 oocysts/L)), and consequently no additional treatment at the Buckman Regional Water Treatment Facility

Sodium

Sodium levels for all Santa Fe entry points range from 7.5 to 26 PPM. The system-wide average is 8.9 PPM.

<u>Voluntary Monitoring</u>

For the results of additional voluntary monitoring for the Canyon Road WTP, Buckman Wells and City Wells, please see the City's Water Quality page at www.santafenm.gov water quality. To view voluntary monitoring results, go to link for "2015 Water Quality Report" on - https://www. santafenm.gov/water_quality then click the "Water Quality and Compliance" link and go to "2015 Water Quality Report" "Voluntary Monitoring" data on the website lists results from voluntarymonitoring atentry points into the distribution system associated with BRWTP, and the Canyon Road WTP. Since these samples are collected at the point of entry of water into the City's distribution system, the reported concentrations of contaminants may be further diluted in the distribution system through mixing with water from other City sources

EPA has established secondary maximum contaminant levels (SMCL) for certain contaminants. Secondary Standards are non-enforceable standards that serve as quidelines to assist public water systems in managing their drinking water. The presence of these contaminants typically results from the erosion of natural deposits Áluminum and manganese containing materials are used as treatment aids in the water treatment process

For the results of additional voluntary monitoring see the Buckman Direct Diversion website at www.bddproject org. To view voluntary monitoring results click the "Quality" tab and then go to "Monitoring, Testing, and Reporting" followed by "Water Quality Sampling Reports.

Monitoring for LANL Derived Contaminants

In cooperation with Los Alamos National Laboratory (LANL and the New Mexico Environment Department, the City currently monitors Buckman Wells 1, 6 and 8 for LANI derived contamination on a quarterly basis. Samples are analyzed for radionuclides, general inorganic chemicals metals, high explosives and organics. This repeat sampling has occurred during the years 2001 - 2019 and has indicated that Laboratory-derived radionuclides are not present in the Buckman Wells 1, 2, 6 and 8. The results do indicate detectable levels of radionuclides associated with natural sources. These wells are part of the 13 wells that make-up the Buckman Wellfield. When these wells are used, water from these wells is delivered to the Buckman Tank prior to distribution into the system

Microbial and Disinfection Byproducts Rule

The Microbial and Disinfection Byproducts (M/DBP) Rules are a set of interrelated regulations that address risks from microbial pathogens and disinfectants/ disinfection byproducts (DBPs). The Stage 2 Disinfectants and Disinfection By-Products Rule (DBPR) focuses on public health protection by limiting exposure to DBPs (known carcinogens), specifically total trihalomethanes (TTHM), five haloacetic acids (HAA5) and bromate which can form in water through disinfectants used to control microbial pathogens.

The City of Santa Fe system has eight compliance sampling locations for TTHM and HAA5. Each location is sampled once per guarter. The average of analytical results for DBPs at a given location during the previous four quarterly samples is called the locational running annual average (LRAA). The LRAA at each location must be below the MCL (60 PPB for HAA5 and 80 PPB for TTHM). Results shown in the Table below indicate that the system is in compliance.

	MCL†	MCLG†		Highest LRAA†	Range	2019 ‡	Typical Sourc
Haloacetic					Low †	High †	By-product
Acids (HAA5s)	60	NA	2019	30	0.0	40	of drinking water chlorination
Total					Low †	High †	By-product
Trihalo- methane (TTHMs)	80	NA	2019	51	3.9	62	of drinking water chlorination

 \dagger = units are PPB (ug/L) \ddagger = individual samples at all locations

Bromate monitoring is required at the entrance to the distribution system whenever ozone is used to treat drinking water. BRWTP is the only treated water source that supplies ozonated water to the City of Santa Fe. Compliance is based on the running annual average (RAA) of monthly samples collected from BRWTP finished water. The results are summarized in the table below and indicate that the levels were in compliance with bromate requirements for all of 2019.

	MCL†	MCLG†		Highest LRAA†	Range	2019 ‡	Typical Source
Bromate§	10	ZERO	2019	3.98	Low †	High †	By-product of drinking
	.•		2017	2.73		5.7	water disinfection

† = units are PPB (ug/L) § = monitoring required at BRWTP only. Compliance value is based on running annual average (RAA) of quarterly averages of the

monthly finished water results

The Stage 2 DBPR also regulates the maximum residual for disinfectants: chlorine dioxide, free chlorine, and chloramines. The disinfectants are water additives used to control microorganisms, particularly as a residual disinfectant in distribution system pipes.

The City of Santa Fe water system uses free chlorine as a disinfectant. For the year 2019, sampling was performed at 80 monitoring locations each month. The results are summarized in the table below:

	Sample Maximum										
	MRDL†	MRDLG	Year	RAA†	Rang	e 2019	Violation	Typical Source			
Chlorine Residual	4.0	4	2019	l	Low †	High †	NO	Water additives used to control microbes			

Lead and Copper Rule

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. The City of Santa Fe is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead.

Tests for lead and copper are taken from customer taps located throughout the City once every three years. The most recent round of lead and copper testing took place in September 2018. If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing.

Inorganic Contaminants	MCLG	AL*	City Water Levels (90th percentile)*	# of Sample <al< th=""><th>Sample Date</th><th>Exceeds AL</th><th>Typical Source</th></al<>	Sample Date	Exceeds AL	Typical Source
Copper (PPM)	1.3	1.3	0.37	31 of 31	September 2019	No	Erosion of natural deposits; Leaching from wood preservatives; Corrosion of househol plumbing systems
Lead (PPB)	0	15	1.8	31 of 31	September 2019	No	Corrosion of househol plumbing systems; Erosion of natural deposits

* AL = Action Level

** Results of monitoring are used to determine the concentration at the 90th percentile (e.g., if 100 samples analyzed, the concentration at the 90th highest sample). Based on the number of samples analyzed in 2018 the 90th percentile is the 28th ranked sample for copper and lead.

2019 City of Santa Fe Water Quality Table

The table on the following page lists contaminants which

- 1) have associated primary Maximum Contaminant Levels (MCLs) that are regulated and
- 2) were detected in testing conducted by the City and New México Environment Department.

The table includes only those constituents found above detection limits during 2019 sampling, or during sampling in previous years if not analyzed during 2019. The EPA requires monitoring for certain contaminants less than once per year because the concentrations are not expected to vary significantly from year to year. The City is required to test for over 80 contaminants, and the vast majority of these contaminants were not found above detection limits Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of these contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency's (EPA) Safe Drinking Water Hotline (800) 426-4791, or visiting www.epa.gov/safewater

Please view separate 2019 Water Quality Table (on the reverse side of this page)

Conserve Water... every drop counts

For information regarding the City's water conservation program, ways to conserve, and rebates, please contact the City's Water Conservation Hotline at (505) 955-4225.

